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Abstract  

 

We focus on the task of human detection using 

unsupervised pre-trained neutral networks. The goal 

is to use multi-task feature learning to pre-train the 

network to identify people given image data. 

Intuitively, by learning features to identify subparts 

of human figures, such as arms, legs or torsos, these 

features can then be used for the learning task of 

classifying people. We train smaller convolutional 

networks on a dataset comprising of annotated video 

data of people in a variety of environments and poses 

and on existing datasets of labeled body part data in 

still images. The shared features that are learnt as a 

result of the multi-task feature learning are then 

applied to learning humans in an object classification 

task.   

 

Related Work/Motivation: 
 

Human detection has strong commercial and defense 

applications for a variety of purposes, including 

surveillance, analytics and entertainment. The task of 

detecting humans with high precision and recall is 

still a challenge. Multi-task learning has been used to 

boost accuracy and learning rate in classification 

tasks that are related. Unlike single-task learning, the 

goal is to simultaneously learn across all tasks, 

implicitly depending on a  shared feature 

representation. This has been successfully used 

in  applications such as detecting generic 3D 

objects,  human faces/expressions (Torralba, Murphy 

and Freeman 2007) and 2D symbols (Krempp, 

Geman and Amit 2002).  

 

There exists a large body of work based on recursive 

models (Zhu, Chen, et al. 2010, Zhu, Lin, et al. 2008), 

and on spring-based models for object 

classification/detection (Ramanan 2011). These 

approaches rely on a priori knowledge of the human 

model when tackling the object classification task. In 

particular, unsupervised learning has been used with 

a combination of levels of recursion  (Zhu, Chen, et 

al. 2010)  to learn the hierarchical dictionaries for a 

class of 26 object models automatically, with a 

shared common dictionary of 5 features. This multi-

task learning approach results in both part-sharing 

and appearing-sharing, enabling more efficient 

learning and inference.  

 

Dataset  
 

The datasets were compiled from five sources: 

LAMDa (Sapp, Jordan and Taskar n.d.), CVPR 

(Hofmann and Gavrila 2009), ETHZ (Eichner and 

Ferrari n.d.), H3D (Bourdev and Malik n.d.) and 

VideoPose (Sapp, Weiss and Taskar n.d.) datasets. 

For each of these datasets, the relevant body parts 

were identified and an appropriate bounding box of 

the relevant scale drawn over the body parts. The 

generated patches were then evaluated to removed 

occluded data (particularly from the CVPR dataset).  

 

 
Figure 1. Sample image from H3D dataset with output training 

patches generated for head, arm and torso datasets. 

 

The raw images for each of these body parts were on 

the order of 5000 training examples. There are 6 

body part datasets: head, torso, arms and legs. The 

images are rescaled to patches of 64x32 pixels. This 

aspect ratio was chosen to better train patches for the 

classification task of detecting human figures, which 

have approximately a 2:1 ratio. 

 

Convolutional Neural Networks: 
 

Convolutional Sparse Networks as developed by 

(Kavukcuoglu, et al. n.d.), allow for faster training 

with similar performance as compared to traditional 

steepest descent sparse coding. The convolution 

operator allows for structures at a given orientation 

within the data to be modeled independent of their 

locations in the image. 
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Figure 2. Sample CNN with two layers, one output node. 

 

The work is on a multi-task training algorithm to 

produce a common set of features across the datasets 

for the purposes of a human detecting neural network. 

Motivated by work from (Zhu, Chen, et al. 2010), the 

network is trained using all the datasets 

simultaneously, to obtain common feature sets. This 

feature set is then evaluated as an input to the human 

detection network. The human detection system is a 

convolutional neural network (ConvNet), 

implemented by Zou, W. The networks trained use a 

single layer of hidden nodes, with  features such as 

max-pooling and maximum suppression to boost 

classification accuracy. 

 

Network Training: 
 

All networks were 1-layer CNNs using 8 feature 

maps with dimensions 16x8, a pooling factor of 2 

with response maps of size 8x4. For each output node, 

there are a total of 128 weights. An additional round 

of training was conducted using 16 feature maps for 

each network.  

 

 
Figure 3. Network structure used for human classification using 

part data 

 

The training sets consisted of positive training 

examples taken from the INRIA training set, negative 

examples from the INRIA training set, and training 

sets for the various parts (arms, legs, head and torso). 

Networks were trained for 300 iterations or until the 

learning rate was cut-off. In this case, the maximum 

iteration count was reached first for all networks 

trained. Refer to Figure 5. for explanations of the 

different networks trained. A total of 10 different 

types of configurations were considered. 

 

 

 

Pipeline: 
 

Given a sample input image, sliding windows of 

various sizes are run over the image. The input patch 

is then run through the detection network to observe 

if a person has been detected in that region. The 

activation maps over all the sliding window sizes are 

then agglomerated into bounding boxes greedily, 

starting with the box with the highest probability and 

then either merging it to nearby boxes or eliminating 

overlapping boxes otherwise. The output bounding 

boxes are then passed as input to the detection unit, 

which evaluates a hit if the bounding box 

approximates the annotation by more than 80%, or 

otherwise as a miss.  

 

Experimental Results: 

 

For the part-trained datasets, their performance was 

validated against a test set of patches from the part 

databases which were set aside from the training set 

(Figure 4.). The performance on the test and training 

sets demonstrate reasonable accuracy on part 

detection, given the limited feature size.  

 

 8 Feature Maps 16 Feature Maps 

PartsOnly 68.66 48.04 

Head 60.0 60.49 

Torso 60.53 40.15 

Arms 91.82 93.02 

Legs 62.17 25.91 

PeopleParts 67.19 60.26 

Head 60.27 40.33 

Torso 55.73 58.22 

Arms 88.77 85.47 

Legs 62.95 49.30 

Figure 4. Percentage accuracy on test set for part classification 

 

The performance of the different networks was tested 

on a sample taken from the INRIA test set. These 

samples label people with bounding boxes of a 

similar aspect ratio (2:1), but only people who are 

upright or are clearly in the frame (cropped people 

parts are considered negative examples). First, sliding 
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Figure 5. Network configurations used for experiments. 
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Figure 6. ROC Curves for 8-feature map networks and 16-feature map networks. 

 

window detection was run at several image scales. 

Bounding boxes were only drawn for those parts that 

were above a variable threshold value. Based on the 

threshold value, we can obtain an ROC curve of the 

performance of the differently trained networks 

(Figure 6) in terms of their miss rate and false 

positive rate.   

 

We observe that the addition of part data to the 

training set results in a significant performance gain 

for the trained networks. The parts-based networks 

achieve a lower miss rate to a minimum of 0.35, 

although at the cost of a higher FFPI. This suggests 

that these networks identify additional regions for 

people parts. As shown in Figure 7, the parts-based 

networks identify people who are only partially 

visible in the image (and thus not marked as positive 

in the INRIA test set). For more discussion on some 

sample false positives and bounding box limitations, 

refer to Figures 7 through 10, which give some 

bounding box annotations returned by the 

PartialInitial network.  

 

It is unsurprising that the dataset trained only on part 

data and negative examples performs poorly on 

people detection. Here, the activation nodes for part 

labels are considered labels for person detection. 

However, we observe that using such a part-trained 

network as initialization weights for people detection 

results in significantly better performance on the 16 

feature map networks.   

 

 

Conclusion 

 

The inclusion of part classification into the training 

of people detection networks is shown to improve 

performance of such detectors. A simple extension to 

the project would be to train part classifiers to reach 

some degree of performance on a cross-validation set, 

and then applying this result to train a people 

detection network. Similarly, a network with a larger 

number of feature maps (or an additional 

convolutional layer) could be trained.  
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